Frequently Asked Questions

Economic model and operations

Is TransPod's objective to "sell" the technology to third parties (line operators, partners, infrastructure builders?) or to commercialize future transportation corridors?

We are positioning ourselves as developers of this technology rather than as a manufacturer and line operator. TransPod today has no vocation to be a builder or an operator, as companies already exist and excel in this area. TransPod will be supplier of rolling stock, and will bring expertise in the construction and development of the line.

A consortium will be in charge of studying line layouts, identifying suppliers for construction, securing financing, and then building and operations. This is not the first time a system like this will be put into place, we are inspired by traditional models of public-private partnerships (PPP), such as those implemented for the recent LGV Paris-Bordeaux, which are proven to work.

On the other hand, and in order to help our future customers, we do the first part of the work ourselves by conducting feasibility studies, and building business models, infrastructure design and engaging in industrial partnerships. Depending on the market's willingness to operate TransPod lines, it will still be possible to create a subsidiary operating the lines only to set an example and then transfer skills to a full operator.

Will TransPod delegate maintenance and line maintenance to partners?

As this topic relates to user safety, TransPod will remain involved with the maintenance services of any future line operator. We design systems for safety, preventive maintenance, control and high maintainability. We entrust these systems to the line operator, but TransPod will remain a supplier of spare parts and components for standard exchange. Repackaging of subsets will also be done in TransPod's workshops.

Finally, once the operators are autonomous, several types of contracts are to be considered: parts and provision of maintenance technicians, training of the customer's technicians, total maintenance contract (parts, preventive maintenance, repackaging, general maintenance). The model is similar to that of rolling stock manufacturers who design and build vehicles then entrust maintenance to operator consortia or specialized companies.

Should this mode of transport compete with the plane or the rail?

The TransPod system competes with short and medium-haul aircraft. For a Canadian example, it takes 5 hours to go from Toronto to Montreal by plane, and 5:30 by train (door to door). Traveling on the ground at the speed of the plane, for a price similar to that of a TGV makes sense. On the other hand, long-haul flights will always be necessary to cover the great distances and cross the oceans. Similarly, we intend to compete with the diesel train as the benefits are demonstrated through transportion time, respect for the environment, and to leave the way to the transport of goods.

The case is different in France and in Europe where the rail network is very developed, efficient, and to be restored rather than abandoned. We do not see the point of competing with a Paris - Lyon, but we see an interest in completing the current network by thinking about links for which the TGV is no longer relevant: the famous POLT, and also transversal links like Bordeaux - Toulouse - Montpellier - Marseille - Cannes - Nice, Lyon - Clermont, and extensions to Spain (Madrid, Barcelona, ​​Seville / Malaga), Italy (Milan - Turin - Rome), Belgium then the Netherlands, Germany. Some very long-term scenarios (50 years) even see a line to go to Moscow. All this is just a preview and needs to be confirmed by feasibility studies, but it does give an idea of ​​how a TransPod network could eventually decongest airports by replacing short and medium-haul flights, while integrating existing transport networks.

Capacity, travel time and ticket price

How many passengers would ride a TransPod line every day? What are your long-term objectives for passenger flow on one line per hour and per day?

The TransPod system is closer to public transport than a TGV or an airplane. Our initial data is 27 passengers per pod, departures every 80 seconds. This represents 1215 passengers per hour and per direction. If we consider operations from 6am to midnight (the rest being reserved for maintenance operations), then we obtain a maximum capacity of 21,870 passengers per day, per tube and per direction. These data seems precise, and is articulated further here:

  • The pods we design will carry 25 to 40 passengers, depending on the configuration of the interior.
  • The departure rate can fluctuate between 80 seconds and 2 minutes depending on the time of station operations.
  • This capacity is to be modulated according to freight transport. Freight and passenger pods will follow each other in the tubes, where freight is transported during off-peak hours.
  • Finally, since the starting frequency is determined by the maximum distance between pods (itself dependent on the speed, the braking capacity and the safety distance between pods), the length of a pod does not matter (except influence on its weight and therefore the stopping distance) and we can imagine "XL" pods, longer and carrying more people, or "double" pods, like coupled TGVs.

In conclusion, each corridor has its own constraints and its demand, and it is useless today to design a universal system. We prefer to work on a basic version, and to envisage variants that will be implemented according to characteristics of the corridor, themselves revealed by the feasibility studies.

What is the travel time between two stations?

The calculation of a transport time depends on many variables (geography, turns, elevation). If we consider an acceleration similar to that of a train (0,1g), that is soft and comfortable for the passenger, we reach the average cruising speed (1000km / h) after 5 minutes, and we have already traveled about 40km. Here is an estimated travel time table, based on these assumptions. This allows to present orders of magnitude. Do not consider individual journeys, but consider the line as a network and imagine travelers going up and down at each station, with a wide variety of routes. Just as traveling from one bus stop to the next brings no benefit, but a bus route must have multiple stops to be useful to the entire population served.

Distance (km) Duration (minutes) Average speed (km/h)
50 19 156
100 22 283
200 28 441
500 46 664
1000 76 798


  • average cruising speed: 1000 km / h (taking into account speed variations due to cornering and climbing bends).
  • added 10 minutes to account for the time of operation at the departure and arrival stations (depressurization, depressurization, maneuvers, safety system tests, etc.).

What would be the approximate price of a ticket in the context of the projected line operation costs?

Just as it is possible to talk about overall line capacity, but not on a case-by-case basis, setting the ticket price is a utopian idea at this level. Too many variables come into play to say how much will cost a trip between Paris and Toulouse, or between Toronto and Montreal. On the other hand, we can say that we are working in such a way as to obtain a ticket price similar to that of the high-speed train.

The initial cost study published in July 2017 indicates a construction cost per kilometer similar to that of the high-speed train. We expect that maintenance costs will be lower than those of the TGV because of the reduction in the number of moving parts, and the protection of the track by the tube (while a TGV road is subject to weather conditions). We are aiming for a ticket price below $100 CAD for a Toronto Montreal trip for example. Developing a transport system "for the rich" (as we sometimes hear), or reproducing the Maglev's mistakes makes no sense to us.

Test site in Haute-Vienne

Will there be permanent jobs created in the area other than construction workers?

Once the construction phase is over, we aim to hire between 10 and 20 full-time positions - the activity may vary according to the test phases. Candidates include PhDs at the University of Limoges, researchers and operators. Administrative staff will be quite minimal and will focus on support functions and security.

Jobs will be created at the test track site. Our desire is to hire locally, people will come from surrounding communities. Depending on the profiles and skills sought, we will broaden the scope of candidate search if necessary.

How will the site be visible to locals? Will it prevent their travel in the area?

Different parts will be visible: the maintenance building to the south and the turnaround building at the north end of the line. Both should fit into the landscape to limit visual noise.

In between, a 2m diameter steel tube will be placed on concrete pads and positioned on the east side of the decommissioned rail track, and a service lane will be located on the other side for vehicles.

For security reasons, the site will be screened, and access to the public will be regulated. We are planning a visitor space in the maintenance building, high up, where people can see the tube, the workshops and the control room. Apart from the test and evacuation phases of the tube, it will be possible to walk along the tube provided that it is accompanied by TransPod personnel. To avoid unnecessary costs and facilitate maintenance, the tube will be placed on the ground. From further away, hardly anything will be visible: the section where the tube will be close to the road is cashed and the tube will be under the level of the slopes which border the way.

Will the test vehicle will be modeled on a passenger or cargo pod?

The technological elements allowing levitation, propulsion, braking and power transmission, security systems, sensors and radio systems will be built into the test vehicle and implimented towards our final pod design. The prototype will not contain a pressurized cabin for the transport of goods or passengers. We foresee a variant that would contain a pressurized module filled with sensors, and allow to observe the behavior of the structure during a very high speed movement.

Beyond the test, is it planned to create a high-speed line (Limoges / Paris / Toulouse / Poitiers) thanks to this technology?

It is too early to talk about building a line and we still have a lot of work before we get to have the regulation, finance, construction and operation teams around the same table. However, we must prepare the groundwork for this phase.

Today, France is concentrating on the rehabilitation of small lines and the examination or abandonment of TGV projects. Vacuum train technology is a great complement to the current network.

Will the test line bring the test vehicle to full cruising speed?

The 3km test track site is not long enough to reach the full speed planned for operations. Since prototypes do not contain passengers or cargo, we are free to set acceleration beyond the comfort zone we expect for a commercial line. However, increasing acceleration means increasing the power delivered to the pod, and the power transmission systems we have engineered has a limit. We chose a 1/2 scale prototype for this site, which divides the volumes by 8, and allows to use 8 times less power than to propel a prototype scale 1 at the same speed. Even so, we will only be able to reach about 600km/h on this 3km test line. This is why we plan to either extend the test line in a second phase, or use a longer scale test line 1, to reach the maximum speed of our specifications (1200km/h).

TransPod network and infrastructure

Will each new station require new vacuum tubes?

No, we are developing a referral system that serves intermediate cities on secondary tracks, on a similar operation to the New York subway, or "pit stops" on motor racing. The line features two parallel tubes (one for each direction) allowing any type of pod to circulate: passenger pods, cargo pods, etc. Upstream of a station, two switches provide access to two other tubes that will serve the station, then downstream, two switches will allow to reach the main line again. There, around each station, there will be 4 tubes (main line and access to the station), and all along the line, only 2 tubes, the pods can either take the switch and stop, or continue on their route if they are scheduled for an express direct route.

Initially, the type of trip (direct, with multiple stops, etc.) will be indicated for travelers to go to the pod that serves their destination.

Will the TransPod system require the development of infrastructure (stations, pod storage stations) in the cities that will be connected by this mode of transport? What infrastructure will be needed to operate a TransPod line?

Like a new metro or a new tramway, the TransPod system requires its own infrastructure, running in a tube and on no existing infrastructure (rail or road). However, we are thinking about integrating these infrastructures in an efficient and intelligent way: a TransPod station does not make sense if it is located 30 minutes or more from a downtown area, like our current airports. It goes without saying that the stations will have to be installed near the urban centers, or close to a public transport "hub" allowing the passengers to fully benefit from the time saved by the system. The time is not for competition, but for integration. Thus, the stations will have to be multimodal.

Ancillary elements (storage and maintenance building for pods, operations center, line maintenance structures) may be located outside cities. Ideally close to urban centers to benefit partners, suppliers and industrial customers, usually also located in these industrial areas on the outskirts of cities.